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Abstract

The optimal values of the design variables which minimize the pressure loss under the required temperature rise are

obtained numerically in a plate-fin heat sink. In thermal/fluid systems, three fundamental difficulties such as a high com-

putational cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity

information, and the occurrence of numerical noise are commonly confronted. Thus, sequential approximate optimi-

zation (SAO) algorithms have been used to overcome the above mentioned problems. In the present work, the progres-

sive quadratic response surface method (PQRSM), which is one of the SAO algorithms, is proposed for constrained

nonlinear optimization problems and is coupled with the computational fluid dynamics (CFD) for the optimization

of heat sink. The optimal solutions obtained from the PQRSM are also compared with those of the sequential quadratic

programming (SQP) method, which is one of the gradient-based optimization algorithms, to validate the efficiency and

fidelity of the PQRSM.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Electronic equipments generally use heat sinks as

cooling devices in order to effectively control heat arising

from them. The heat sinks are commonly installed in the

restricted space of the systems and their thermal perfor-
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mance can be improved both by enhancing the heat

transfer rate and by reducing the pressure loss. More-

over, the advancement of packaging technologies has

led the size of heat sinks miniaturized. Therefore, the

optimal design of heat sinks is becoming more and more

important issue and is one of interesting research areas

in mechanical engineering; thereby it has been much

paid attention by numerous researchers [1–4].

The optimal design of fluids/thermal (FT) systems

associated with conventional optimization techniques

such as a gradient-based algorithm requires not only a

very difficult work, but also a high computational cost.

However, the analysis of flow and thermal characteris-

tics by the computational fluid dynamics (CFD) needs
ed.
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Nomenclature

aij coefficients of approximate function

B1, B2 base- and lower-part of fin width [m]

Bk Hessian matrix

c0 coefficient of approximate function

C1, C2, C3, Ck, Cl empirical constants in the k–e
model

Dk second-order of quadratic approximation

model

f(x) objective function
~f ðxÞ approximation of f(x)

fR, fk empirical functions in the k–e model
gj(x) inequality constraints

~gjðxÞ approximation of gj(x)

gk first-order of quadratic approximation

model

Gb, Gk generation terms in the k–e model
~Gk normalized approximate Hessian matrix

h fin height [m]

H height of heat sink (=h + t), [m]

k turbulent kinetic energy [m2/s2]

ks thermal conductivity for solid [W/m K]

L length [m]

n number of design variables

P pressure [Pa]

DP pressure drop [Pa]

Q dissipated heat [W]

rk trust region ratio

Sk diagonal matrix

t base thickness of heat sink [m]

T, T 0 mean and fluctuating temperature, respec-

tively [K]

DT temperature rise [K]

uj, u0j mean and fluctuating velocities, respectively

[m/s]

W width [m]

x, y, z Cartesian coordinates [m]

x design variable vector

Greek symbols

e dissipation rate of k [m2/s3]

hj thermal resistance [K/W]

l, lt viscosity and eddy viscosity [N s/m2]

q density [kg/m3]

rk, re turbulent Prandtl and Schmidt number for k

and e
/ general dependent variable

Ck radius of trust region

Subscripts

E exit

H heat sink

hs heat source

in inlet

j junction or maximum

k number of iteration

R reactor

1 ambient

Superscript

* approximate optimal points
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an excessive CPU time for computing the objective

functions for heat transfer rate and pressure drop. Thus,

approximation models such as the sequential approxi-

mate optimization (SAO) technique have been intro-

duced into the optimization of FT-system. The SAO

technique optimizes the approximate problems itera-

tively until the convergence criteria are satisfied. Gener-

ally, the SAO is classified into two categories according

to information required during the optimization: gradi-

ent-based approximation (GBA) and function-based

approximation (FBA). In the GBA, gradient informa-

tion for objective functions and/or constraints are re-

quired to approximate the optimization problem.

However, it is often unavailable and sometimes too

expensive to approximate through the finite difference

method because the analysis of design sensitivity has

to be performed. Thus, in particular optimization prob-

lems the GBA cannot be applicable to optimize the FT-

system. In contrast to the GBA, the FBA only needs the

function for optimization and is relatively simple in the
approximate optimization problem. The most widely

used methodology in the FBA is the response surface

approximation (RSA) [5,6] related to the trust region

algorithm and the design of experiments. The RSA,

which is originally developed for constructing the global

optimization, does not need the procedure of sensitivity

analysis so that it is a suitable method in this considered

study. In addition, the RSA is an adequate method in

FT-systems which frequently encounters the numerical

noise because it can give the smoothness of response,

thereby avoiding local or sub-optimal solutions in a

wide range of design spaces. However, the main diffi-

culty faced by the RSA is that it requires a large number

of the design points through design of experiments (or

the number of necessary function analyses) to construct

a response surface for a function that involves the design

variables n. For example, for the conventional quadratic

response models, the computational requirements grow

by the square of the number of the design variables

(i.e., (n + 1) Æ (n + 2)/2 terms).
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In order to construct an approximate model effi-

ciently even though the problem has a large number of

design variables, researchers in the iDOT (the center of

innovative design optimization technology, in Hanyang

University) [7,8] have proposed the progressive qua-

dratic response surface model (PQRSM) and applied it

to the MDO (multidisciplinary design optimization)

problem. The PQRSM has the following two merits:

Firstly, it requires only (2n + 1) points for determining

the regression coefficients of linear and quadratic terms

in each approximation. The two-factor interaction terms

are also determined by using the normalized quasi-New-

ton formula. Moreover, it algorithmically converges

from the global quadratic to the local approximations

in the context of the trust region model management

strategy. Secondly, the PQRSM does not require the

additional CPU time to explicitly construct a quadratic

approximate model because it uniquely determines all

the regression coefficients and updates the remained

regression coefficients for the two-factor interaction

terms using the uniquely determined terms.

In this study, the optimal values of the design vari-

ables of a plate-fin type heat sink are numerically ob-

tained using the CFD associated with the PQRSM in

order to minimize the pressure drop under the required

temperature rise. The overall procedure including the

analysis of flow/thermal fields and the optimization is

carried out through the batch-job process. The efficiency

of the PQRSM is also investigated by comparing the

optimized solutions with those of the sequential qua-

dratic programming (SQP) method which is a gradi-

ent-based local optimization technique.
LH

Fig. 2. Plate-fin type heat sink.

2. Definition of optimization problem

2.1. Physical model

A thermal system under consideration for optimiza-

tion is a fan-drive heat sink with plate-fins consisting

of duct, heat sink, and reactor and is illustrated schemat-

ically in Fig. 1. Air induced by an axial fan (Model:

3112KL-05 W-B50, size: 32 · 80 · 80 mm, Max. flow

rate: 1.46 m3/min) with a constant temperature (Tin =

318 K) passes the duct which plays a role of a flow guid-

ance and enters the channels formed by fins and heat

sink base. Thereafter, heated air, which absorbs the heat

from the heat sink, flows out through exits

(88 · 55,LE · WE mm, 3EA) located top wall of the

reactor part. The overall dimension of reactor part is

160 · 360 · 150 (LR · WR · HR) mm and it contains

three reactors. The temperature of each reactor is kept

on 343 K and has a diameter of 75 mm and a length

of 125 mm.

Fig. 2 depicts the detailed physical configuration of

the plate-fins heat sink schematically because the objec-
tive of this study is to optimize the heat sink shape for

high performance. The heat sink is made of aluminum

(q = 2707 kg/m3, ks = 204 W/m K) and the fins are manu-

factured by extruding technique. The overall dimensions

of a heat sink are a length LH = 430 mm, a width of

WH = 188 mm, and a height of HH = 65 mm. Noting

that the height of the heat sink (HH) is the sum of the

fin height (h) and the base thickness of the heat sink

(t). Two heat sources with projected heating areas of

dimensions of 62 · 122 mm (Lhs · Whs), which are

mounted on the top wall of the heat sink, uniformly gen-

erate the heat by two different electric resistance heaters

(Q1 = 348 W, Q2 = 321 W) as shown in Fig. 2. The heat

generated by heat sources is conducted through the heat

sink at first and then it is rejected to the environment by

means of forced convection. Thus, the problem consid-

ered becomes a conjugated heat transfer problem. Fig.

2 also shows that the internal shape of the heat sink
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can be determined by geometrical parameters such as the

fin pitch (S) or number of fins, base thickness of the heat

sink (t) or fin height (h), base-part fin width (B1), and

lower-part fin width (B2).

2.2. Optimization

2.2.1. Mathematical formula for optimization

Optimization problems are made up of the following

basic ingredients; a set of design variables, a perfor-

mance (or objective) function, a set of constraints, and

side constraints. The optimization is to find values of

the design variables that minimize or maximize the

objective function numerically while satisfying the con-

straints. In this point of view, the nonlinear, constrained

optimum design problem can be expressed mathemati-

cally as follows:

Find x ¼ x1; x2; � � � xn½ �T ð1Þ
to minimize f ðxÞ ð2Þ
subject to gjðxÞ 6 0 for j ¼ 1;m ð3aÞ

xLi 6 xi 6 xUi for i ¼ 1; n ð3bÞ

where x represents the design variable vector and n is the

number of design variables. f(x) is the objective function

which depends on the values of the design variables.

gj(x) denotes the inequality constraint. xLi and xUi are

the lower and upper limits of the design variables,

respectively, and they simply limit the region of search

for the optimization. m is the number of constraints.

2.2.2. Objective functions and design variables

High performance of the heat sink can be easily

achieved both by improving the heat transfer rate and

by adopting the large capacity of a fan. For a given

operating condition of a fan, increasing the heat transfer

rate, however, is accompanied by increasing the pressure

drop as a necessity. It is obvious from this phenomenon

that a high thermal performance (or cooling efficiency)

can be obtained both by minimizing the thermal resis-

tance and the pressure drop in the case of fixed volume

of the heat sink. The pressure drop (DP) and the thermal
resistance (hj) have been generally adopted as the objec-

tive functions to be minimized in many industrial appli-

cations and they are given by

hj ¼
T j 	 T1

Q
; DP ¼ P 	 P1 ð4Þ

where Tj is the maximum or junction temperature, T1
the ambient temperature, and Q the heat generated

through the heat sink. P and P1 are the average pres-

sure in the heat sink and the ambient pressure,

respectively.

As shown in Eq. (4), a number of different objectives

often have to be minimized at once and is called a multi-

objective optimization problem. Usually, the different
objectives such as pressure drop and heat transfer rate

are not compatible, that is, the variables that optimize

one objective may be far from optimal for the others.

Therefore, the ways for treating a multi objective func-

tion problem have been introduced; optimization prob-

lems with multiple objectives are reformulated as

single-objective problems by either forming a weighted

combination of the different objectives or else replacing

some of the objectives by constraints. In a practical sit-

uation for a heat sink design, it is generally required that

the maximum temperature (or temperature rise, DT)
should be maintained under the desired one. Thus, the

maximum temperature (or DT) is used as a constrained

condition and the pressure drop is adopted as an objec-

tive function only in this study.

The geometric parameters which strongly influence

the thermal performance of the heat sink are the base-

part fin width (B1), lower-part fin width (B2), and base

thickness of heat sink (t), as depicted in Fig. 2. Thus,

three design variables are considered in this study:

x1 = B1 , x2 = B2 , and x3 = t (i.e., x = [B1,B2, t]).
3. Mathematical optimization

3.1. Sequential approximate optimization (SAO)

Often, a high computational cost is arising from eval-

uating objective functions in FT-systems related to the

computational fluid dynamics. It is also commonly

encountered that the responses of the system analysis

are discontinuous or numerical noise. Thus, the re-

sponses should be formed as smooth functions in a de-

sign optimization process. In addition, gradient-based

optimization techniques such as the SQP and SLP

methods need derivative information for obtaining

the objective function minimized, which is related to

Navier–Stokes equation. However, it is often not avail-

able and it is very difficult to conduct the sensitivity

analyses in FT-systems. The use of approximation tech-

nologies for optimization has been recommended such

as the response surface approximation (RSA) to over-

come these problems. It has grown in interest in recent

years because it does not require the design sensitivity.

In the RSA, a sequential approximate optimization

(SAO) strategy, in which an optimization for an approx-

imate problem is iteratively repeated until convergence,

has been commonly used.

The optimization problem is approximated by the

following equations and then solved by means of a

SAO method.

minimize ~f ðxÞ; x ¼ ½x1; . . . ; xn� ð5Þ
subject to ~gjðxÞ 6 0; j ¼ 1;m ð6Þ

max½xL; xðkÞL � 6 x 6 min½xðkÞU ; xU� ð7Þ



2130 K. Park, S. Moon / International Journal of Heat and Mass Transfer 48 (2005) 2126–2139
where the superscript 
 means the approximated

amount. The additional move limits (x
ðkÞ
L and x

ðkÞ
U ), as

shown in Eq. (7), are controlled logically in SAO process

to ensure the accuracy of approximation at the current

design iteration, x(k). They are temporally applied at

each iteration and can be changed as the optimization

proceeds within the global ranges of the design vari-

ables, xL 6 x 6 xU.

3.2. Progressive quadratic response surface model

(PQRSM)

The PQRSM used in this study constructs an approx-

imate model by means of a way of the global optimiza-

tion at first, and then obtains the accurate optimal

values with a local optimization as the optimization pro-

ceeds. The PQRSM has the following three characteris-

tics compared to the conventional response surface

model; the choice of the initial design samples, the use

of the normalized quasi-Newton formula for the qua-

dratic approximation process, and the explicitly con-

struction of approximate model without using a least

square method.

3.2.1. The design sampling points

One of the important issues for constructing an accu-

rate model is the choice of a proper set of sampling

points for design of experiments. At the initial step

(x01), total sampling points of (2n + 1) for each design

variable (that is, two points along the axis (2n) and

the center point (1)) are selected as shown in Fig. 3a.

Then the quadratic approximate model is constructed

using the three-point polynomial interpolation method

after the exact function values are evaluated at the
1x

2x

1
Ux1

Lx

2
Ux

2
Lx

1Γ

0
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*
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(a) At the 1st iteration

Fig. 3. Design points samplin
selected (2n + 1) points. That is, using the (x0, f0) for a

center point and the (xi1, fi1) and (xi2, fi2) for two points

along the axis in the ith design variable, the quadratic

approximate function for the ith design variable, ~f i

can be obtained as

~f i ¼ ai0 þ ai1xi þ ai2x2i ð8Þ

where

ai2 ¼
ðfi2 	 f0Þ=ðxi2 	 x0Þ 	 ðfi1 	 f0Þ=ðxi1 	 x0Þ

xi2 	 xi1

ai1 ¼
fi1 	 f0
xi1 	 x0

	 ai2ðx0 þ xi1Þ

ai0 ¼ f0 	 ai1x0 	 ai2x20

If the number of design variable is two, a three-point

quadratic approximate function can be expressed as a

matrix form as follows:

~f ¼ c0 þ CTxþ xTDx ð9Þ

where

c0 ¼ 	ða11 þ a21Þx0 	 ða11 þ a22Þx20

C ¼
a11
a21

� �
; D ¼

a11 0

0 a22

� �

A response surface model can be uniquely developed

using the selected (2n + 1) points because the quadratic

terms for the approximate model are only diagonal com-

ponents. This approximate model is optimized within

the initial trust region of C(1) and then new design of

x�1 is updated as shown in Fig. 3(a). Now, we evaluate

the exact function value for x�1 and check the accuracy
1x

2x

1
Ux1

Lx

2
U

2
L

1Γ

x
1
 = x

2

2Γ

: Previous region  
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* 0

(b) At the 2nd iteration  

g at first two iterations.
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of approximation using the trust region ratio (rk), which

will be discussed later, and then adjust the new trust re-

gion of C(2) for the next iteration. The sampling points

for the region of C(2) are selected around an approximate

optimal point (x�1 ¼ x02) as shown in Fig. 3(b) and a new

quadratic approximate model is constructed in the same

way as the first iteration step. In the trust region model,

the optimization problem is solved at around xk for the

kth iteration step. In this case, the move limits of Eq. (7)

are defined by means of a radius of trust region, C(k).

x	 xk
�� ��

p
6 Ck ð10Þ

where the p norm defines the shape of the region and the

hyper-cubic type is used in this study. The hyper-cubic

type trust region can easily present a sub-region when

design points are active to their lower and upper limits,

while the hyper-spherical type trust region cannot [7].

The trust region algorithm was originally developed

to apply to the nonlinear unconstrained optimization

problem with a robust global behavior [9]. The qua-

dratic approximate function, Eq. (8), is successively min-

imized with the controlled trust region in each iteration.

The size of the trust region in Eq. (10), C(k) should be

controlled based on how well the quadratic model pre-

dicts the decrease in f(x). In the PQRSM, the trust re-

gion is adjusted using a new variable introduced, rk

which is called the trust region ratio and is given by

rk ¼ Dfk
D~f k

¼ f ðxkÞ 	 f ðx�kþ1Þ
~f ðxkÞ 	 ~f ðx�kþ1Þ

ð11Þ

where x�kþ1 denotes the new design points. This equation

implies the ratio of the actual change (or reduction) in

f(x) to the corresponding predicted change by the

approximation at the kth-iteration. That is, the closer

rk is to unity, the better the agreement is. The trust re-

gion algorithm is the best model management in an

approximate optimization because it adaptively reduces

C(k) to maintain a certain degree of agreement as mea-

sured by rk. If rk is greater than unity, the new design

points x�kþ1 is considered as xk+1 and the radius of trust

region is updated according to the following equation as

Ck ¼
c0C

k	1 if 0 < rk < e1
c1C

k	1 if e1 < rk < e2
c2C

k	1 if rk P e2

2
64 ð12Þ

where c0 ¼ 0:25; c1 ¼ 1;

c2 ¼
2 if kx� 	 x0k ¼ Ck ;

1 if kx� 	 x0k < Ck ;

(
e1 ¼ 0:25; e2 ¼ 0:75

It is noted that from the second-iteration, the optimiza-

tion is carried out not by using the simplified quadratic

function obtained in Eq. (8), but by using the normal-

ized quasi-Newton method, which will be explained in

detail in the next section.
3.2.2. Normalized quasi-Newton formula

The conventional quasi-Newton Hessian updated

formula use only a local information between consecu-

tive iterations throughout the optimization process,

whereas the PQRSM uses the normalized quasi-Newton

method [7].

Let gk and Dk be the regression coefficients of the

first- and second-orders in the quadratic approximation

equation of Eq. (8) at the kth-iteration, which is approx-

imated using design points of (2n + 1). The approximate

Hessian at the kth-iteration, Bk can be constructed using

the quasi-Newton formula, which is well known as the

BFGS method [9].

Bk ¼ Bk	1 	
ðBk	1dkÞðBk	1dkÞT

dTkBk	1dk

þ yky
T
k

yTk dk
ð13Þ

where dk = xk 	 xk	1 and yk = gk 	 gk	1. For an initial

condition, B1 = D1. The original second-order term

(Dk) at the design point of xk has no off-diagonal coeffi-

cients. However, a quasi-Newton formula, Eq. (13)

mathematically gives the off-diagonal terms in Bk. For

smaller range of Ck, Dk has a more accurate diagonal

information than Bk and this characteristic will be grad-

ually dominated as the optimization proceeds. Thus, in

order to replace the diagonal coefficients of Bk to Dk,

the following normalized approximate Hessian, ~Gk is

used.

~Gk ¼ STkBkSk ð14Þ

Here Sk is the diagonal matrix and Siik , which is the ith

component of Sk, is defined as

Siik ¼

ffiffiffiffiffiffiffiffiffi
Dii

k

		 		q
ffiffiffiffiffiffiffiffiffi
Bii
k

		 		q ð15Þ

The signs of diagonal coefficients in the normalized Hes-

sian are replaced by those of Dk. In the sufficiently small

or well-established trust region, Dk and gk within trust

regions are almost equal to those of approximate differ-

entials by means of the central difference method. This

implies that ~Gk is nearly equal to the exact Hessian ma-

trix at xk. Finally, Eq. (13) is modified as follows:

Bk ¼ ~Gk	1 	
ð~Gk	1dkÞð~Gk	1dkÞT

dTk ~Gk	1dk

þ yky
T
k

yTk dk
ð16Þ

Eq. (16) is called as the normalized quasi-Newton for-

mula in this study. Finally, the approximate model used

in the PQRSM becomes

~f ðxkÞ ¼ f ðx�k	1Þ þ gTk ðxk 	 x�k	1Þ

þ 1

2
ðxk 	 x�k	1Þ

T ~Gkðxk 	 x�k	1Þ ð17Þ

In the above equation, gTk is obtained by the response

surface approximation, while ~Gk can be acquired by

means of both the RSM and the BFGS methods. In
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the present work, the approximate model, ~f ðxkÞ, at the
trust region of the kth-iteration is minimized to obtain

the optimal solutions by a local optimization technique

of SQP method [10].
4. Numerical methodology

In order to obtain the optimal design parameters of

the heat sink with plate-fins, the following three pro-

grams are used;

(1) the main program which defines various arrays

and parameters,

(2) the analyzer that evaluates the objective functions,

and

(3) the optimizer which can solve a nonlinear optimi-

zation problem.

Fig. 4 shows the flowchart of the numerical method-

ology for optimization. Once the objective function (Dp)
are obtained as the results of calculation of flow and

thermal fields by the analyzer, the main program calls
xk

START

Input Initial design, x0

For the given design,
Predict the flow and thermal fields

by ANALYZER 

Evaluate the objective function

Minimize the objective function & 
Satisfy the constrains

By OPTIMIZER

New design,

Converge?

No 
Yes

STOP

Fig. 4. Numerical methodology for optimization.
the optimizer to proceed with optimization. The opti-

mizer may modify the design variables. When the opti-

mizer requires new values of the objective functions, it

returns to the main program and the analyzer is called

to calculate them. In this step, the analyzer should gen-

erate a new grid system because new design variables

are proposed by the optimizer. This process is repeated

until the optimization is complete and is performed

automatically. As a result of optimization, the optimal

design variables and the corresponding pressure drop

is obtained.
4.1. Flow and thermal fields

4.1.1. Mean flow equations

The physical problem considered in this study is the

three-dimensional turbulent mixed convective flow and

heat transfer of steady and incompressible fluid. The

fluid properties are taken to be constant except for the

density in the buoyancy terms of the momentum equa-

tion. The effects of viscous dissipation and radiation

heat transfer are assumed to be negligibly small. Due

to the symmetric geometry, the computation is only car-

ried out one half of the physical domain. Using the

above-mentioned assumptions, the Reynolds-averaged

Navier–Stokes (RANS) equations for mass, momentum,

and energy are solved.
4.1.2. Turbulent modeling

The RANS equations contains the Reynolds stress,

qu0iu
0
j in the momentum equations and the turbulent heat

flux, qu0iT
0 in the energy equation, and they govern the

turbulent diffusion which should be determined. In order

to resolve the closure problem of the governing equa-

tions, the standard k–e turbulence model proposed by

Rodi [11] is introduced in this work. According to the

eddy-viscosity concept, the turbulent kinetic energy (k)

and its dissipation rate (e) are obtained from the follow-

ing transport equations:

oðqujkÞ
oxj

¼ o

oxj
l þ lt

rk

� �
ok
oxi

� �
þ Gk þ Gb 	 qe ð18Þ

oðqujeÞ
oxj

¼ o

oxj
l þ lt

re

� �
oe
oxi

� �

þ C1

e
k
ðGk þ C3GbÞ 	 C2q

e2

k
ð19Þ

where lt is the turbulent viscosity and is defined as

lt = qClk
2/e. uj the average velocities, Gk and Gb are

the turbulent production terms of stress and buoyancy

force, respectively. The model constants and various

functions used in the k–e model are found in Rodi [11]

and Abe et al. [12].
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4.1.3. Boundary conditions

We use the following boundary conditions to predict

the flow and thermal fields in thermal system including

the heat sink.

Inlet: The coolant of a constant temperature

(Tin = 318 K) induced by an axial fan enters the system

with a constant velocity (uin = 1.27 m/s) and a swirl con-

dition of 60 rad/s. The corresponding turbulent kinetic

energy and its dissipation rate are calculated from the

following formula: kin ¼ 1:5I20u
2
in; ein ¼ k3=2in =Le, where

the local turbulence intensity, I0 is assumed to be 0.1

and Le is a length scale for dissipation, taken here as

80 mm (fan width).

Outlet: The pressure boundary condition is imposed

at the outflow plane. For the other variables, the New-

mann condition is employed.

Solid surfaces: No-slip boundary conditions for all

solid walls are assigned for velocity. For the turbulent

kinetic energy and its dissipation rate, the wall function

based on empirical wall law is employed. At the heat

sink walls, the following thermal boundary conditions

are imposed; Two different heat fluxes are uniformly ap-

plied to the heat sink at the top wall of the heat sink

(62 · 122 mm) by two heat sources. At the side wall

and the top wall except for heat sources, the convective

boundary conditions are used (h = 3 W/m2 K). At the

bottom wall of heat sink, the adiabatic condition is

adopted. The solid walls of the duct and reactor are as-

sumed to be adiabatic.

Symmetric plane: Symmetric conditions are imposed

for all dependent variables at the plane of symmetry

(i.e., y = 0).

4.1.4. Numerical solution procedure

The governing equations for the three-dimensional

turbulent flow and thermal fields are solved using FLU-

ENT which is a commercial finite volume CFD code

[13]. The reason for using the CFD code is as follows:

to obtain the optimum design variables by means of

the mathematical optimization technique, a fast and reli-

able computer program must be used because it operates

repeatedly for many different geometrical configurations

during the optimization process. All of the commercial

CFD codes, however, basically solve the flow and ther-

mal characteristics via the GUI. Thus, it is an important

task to combine commercial CFD solver with mathe-

matical optimization method in order to carry out the

optimization automatically. In this study, we make the

script files and re-solve the above mentioned problem.

The SIMPLE algorithm [14] is used to calculate the pres-

sure correction equation in the momentum equation.

The power law scheme is employed for the treatment

of convection and diffusion terms.

In the optimization problem, because a new shape of

fins is proposed in every iterative step of the optimiza-
tion process, a new grid system according to the modi-

fied design variables is required. Therefore, the number

of cells for the computational domain has to be given

sufficiently large (for baseline geometry, its number is

around 1,300,000 cells) by considering the fine grid sys-

tem at solid–gas interfaces.

When the results satisfy the following conditions

simultaneously, the solutions are treated as converged

ones:

R ¼
X
domain

anb/nb þ b	 aP/Pj j < 10	5;

/kþ1 	 /k

/k

				
				 < 10	5 ð20Þ

where R represents the residual sum and / is a general

dependent. The subscripts k and nb are the number of

iteration and the neighborhood grid points, respectively.

4.2. Optimization

The numerical procedure of optimization used in the

trust model management strategy for the PQRSM effec-

tively is shown in Fig. 5 as a flowchart and is explained

briefly.

Step 0: The initial trust region is assumed to 30–50% for

design space that includes the initial design

values.

Step 1: Construct a quadratic model using a quadratic

polynomial approximation along each design

variable axes. Let their coefficients be gk and

Dk for linear and quadratic terms, respectively.

If (k + 1) then, go to Step 3, Otherwise, set

yk = gk 	 gk	1.
Step 2: Evaluate the coefficient matrix of the second-

order term (Bk) using Eq. (16) and construct
~Gk by normalizing STk BkSk .

Step 3: Minimize ~f ðxÞ in Eq. (17).

Step 4: Evaluate the actual and the predicted reductions

such as Dfk(x) and D~f kðxÞ using Eq. (11). Then,
check the trust region ratio rk. If rk > 0, then

update xk and go to Step 5 with (k = k + 1).

Otherwise, go to Step 3 with the reduced trust

region using Eq. (12).

Step 5: If the convergence criteria are satisfied, then

stop. In the PQRSM, the solutions are treated

as the convergence ones when the following cri-

teria are satisfied simultaneously as; (1) the rela-

tive or absolute deviation of objective functions

between consecutive SAO iterations is less than

10	3, and (2) the amount of maximum violation

for constraints is less than 10	4. Otherwise,

select new 2n design points around xk+1, within

the new trust region Ck+1 and go to Step 1.
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Fig. 5. Computational procedure of the PQRSM.
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5. Results and discussion

The optimization problem under consideration in

this study is to find the optimal values of the design

variables (x) that minimize the pressure drop (DP)
while the temperature rise (DT) is constrained to be

less than arbitrarily selected values and the width of

a base-part of a fin (B1) is greater than that of low-

er-part of a fin (B2). The plate-fin type heat sink has

the fin-to-fin spacing of 7.52 mm and the number of

fin is 24. Initially, the fins have a 2 mm width for

base-part, a 1.5 mm width for lower-part, and a

7 mm for base thickness, that is, the baseline (initial)

geometry of heat sink is x0 = [B1,B2, t;2.0,1.5,7.0].
The optimization problem can be rewritten as the fol-

lowing expressions:
Find x ¼ ½B1;B2; t� ð21Þ
to minimize ~f ðxÞ ¼ DP ð22Þ

s:t: g1 ¼
DT

ð33K 
 36KÞ 	 1 6 0 ð23aÞ

g2 ¼
B2

B1

	 1 6 0 ð23bÞ

1:25 6 B1 6 5:0 mm;

1:25 6 B2 6 5:0 mm;

7:0 6 t 6 25:0 mm ð23cÞ
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5.1. Parametric studies

The effect of each design variable on the pressure

drop and the maximum temperature is examined by

varying only one variable among the design variables be-

fore the optimization is carried out. The parametric

studies (i.e., the degree of importance of each design var-

iable) are commonly performed in order to find the most

important design variable in a heat sink performance

and to choose the most appropriate optimization algo-

rithm by analyzing the distribution of design variables.

The maximum temperature and the pressure drop for

various base-part fin widths (B1) (1.25 6 B1 6 5.0 mm)

are shown in Fig. 6. In this case, the other design vari-

ables are fixed as the baseline geometry, i.e.,

B2 = 1.5 mm and t = 7.0 mm (x = [B1,1.5,7.0]). It is

noted that the maximum temperature occurs at the bot-

tom surface of the rear heat source. (Heat Source_2,

Q2 = 321 W in Fig. 2.) As the base-part fin width in-

creases, the maximum (or junction) temperature de-

creases, while the pressure drop increases. These

phenomena result from the following reasons; for a fixed

volume of the heat sink (LH · WH ·HH = constant), as

B1 increases, the fluid flows fast through channels which

are formed by adjacent fins. The increased velocity tends

to retard the development of the thermal boundary layer

and results in the thinner thermal boundary layer thick-

ness. It also causes to increase the friction loss, which is

dependent on the pressure drop. Thus, both the heat

transfer rate and the pressure drop are increased as B1

is thickened. By considering the variations of the maxi-

mum temperature and the pressure drop, we can predict

from Fig. 6 that the optimum value of B1 may be

approximately ranged as 2 < B1 < 4 mm.

To explain the effect of the lower-part fin width (B2)

on the flow and thermal characteristics in the heat sink,

the maximum temperature and the pressure drop be-

tween inlet and outlet of the heat sink are investigated
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Fig. 6. Effect of base-width of fin on objective functions at

x = [B1,1.5,7.0].
for various B2(1.25 6 B2 6 5.0 mm) and presented in

Fig. 7. As can be seen in Fig. 7, the trends in the maxi-

mum temperature and the pressure drop are similar to

those of Fig. 6 (which is shown about the effects of

B1), that is, as B2 increases Tj reduces slightly, while

DP increases linearly. These are due to the same physical

reasons as discussed in Fig. 6. Comparing Fig. 7 with

Fig. 6, it is obvious that the influence of B2 on the ther-

mal performance of the heat sink is less significant than

that of B1 (that is, the variations of maximum tempera-

ture for B2 and B1 are 4.4 K and 6.1 K, respectively,

within their ranges). On the contrary, the variations of

pressure drop for B2 and B1 are estimated as 79.38 Pa

and 55.59 Pa, respectively, and it can be concluded that

the effect of B2 on the hydraulic performance is greater

than that of B1 It is also found from Fig. 7 that the opti-

mum value of B2 according to the constrained condi-

tions would be ranged between 1.25 (lower limit value)

and 3.0 mm.

Fig. 8 presents the effect of the base thickness of heat

sink (7.0 < t < 25 mm) on the maximum temperature

and the pressure drop. The pressure drop increases line-

arly with a small slope as the base thickness increases.

An interesting phenomenon can be found for the maxi-

mum temperature. As the basement of the heat sink is

thickened, the maximum temperature decreases sharply

to t = 15 mm at which it has a minimum value, and then

increases slightly with a further thickened base thick-

ness. Heat generated in the heat sink is removed both

by conduction and convection. From the viewpoint of

conduction, increasing the base thickness should trans-

fer more heat. However, as shown in Fig. 8, when t is

greater than 15 mm, the heat transfer is decreased (i.e.,

the maximum temperature is increased). This is due to

the fact that contact surfaces between fins and cooling

air are decreased although the flow velocity induced by

the fan becomes greater. In other words, for the case

of t > 15 mm heat dissipated by conduction increases
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Fig. 9. Convergence histories of pressure drop and maximum

temperature for DT < 33 K.

Table 1

Baseline (Initial) and optimized designs for DT < 35 K

Baseline Optimum

Base-part fin width*, B1 2.0 mm 2.611 mm

Lower-part fin width*,B2 1.5 mm 1.267 mm

Base plate thickness*, t 7.0 mm 10.541 mm

Fin height,h 53.0 mm 49.459 mm

Thermal resistance (hj) 0.0573 K/W 0.0522 K/W

Pressure drop (DP) 53.23 Pa 51.67 Pa

Max. (or junction)

temperature (Tj)

356.34 K 352.98 K

Temperature rise (DT) 38.34 K 34.98 K
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continuously, while less heat is transferred by convec-

tion. From this phenomenon, it can be explained that

for t > 15 mm, the base thickness of heat sink (t) ad-

versely affects on the performance of heat sink. Compar-

ing with the results of parametric studies, the effect of t

on the thermal performance of heat sink is very small

compared to other variables. Moreover, Fig. 8 shows

clearly that the optimal values for the base thickness will

be smaller than 15 mm irrespective of the required tem-

perature rises.

The parametric studies discussed above show that the

pressure drop and maximum temperature in the heat

sink are mainly influenced by the fin widths (B1 and

B2), while the effect of base thickness (t) is relatively

small. It can also be found in Figs. 6–8 that the objective

function according to the fin widths simply increases or

decreases. However, we can find the computational

noise and the conversion point for the maximum tem-

perature from Fig. 8, which is shown by the effect of t.

The parametric studies also offer important information

for optimization that the gradient-based optimization

technique like the SQP method may mislead the optimal

values. It means that the PQRSM, one of the global

optimizations, becomes an effective optimization algo-

rithm rather than the local optimization within the scope

of this study.

5.2. Optimal design

The optimum design variables can be obtained by

minimizing the pressure drop subjected to two con-

strained conditions (DT < 33–36 K and B1 > B2) in the

heat sink. In this study, the initial pressure drop for

the baseline geometry (DP0) is calculated as 53.23 Pa.

Fig. 9 shows the convergence histories for pressure

drop and maximum temperature during optimization.

In this case, the temperature rise (i.e., one of the con-

strained conditions) is fixed under 33 K and the optimal
values of the design variables obtained are

B1 = 3.037 mm, B1 = 2.0243 mm and t = 10.905 mm.

As shown in Fig. 9, the pressure drop has a sharp in-

crease initially and the optimization process is finished

after ten iterations.

To explain the typical results for optimization, the

initial (baseline) and optimal designs for the temperature

rise of 35 K are listed in Table 1. When minimizing the

pressure drop in the heat sink, the value of temperature

rise, which is the most important operating factor for

thermal stability of heat sink, should be restricted.

Otherwise, DT (or Tmax) will tend to continuously in-

crease in excess of its limiting value. As shown in Table

1, for the baseline model, the temperature rise of 38.34 K

exceeds the general desired temperature rise of 35 K

which is corresponding to the maximum temperature

for a safe operation of thermal systems. This means that

the plate-fin type heat sink must be optimized for ther-

mal stability. Table 1 also illustrates that the optimized

thermal resistance of 0.052 K/W represents a reduction

of 8.4% compared to the initial thermal resistance of

0.057 K/W due to the decrease of a temperature rise.

In addition, the pressure drop for the optimal design

variables is also decreased by 3% from 53.23 Pa to

51.67 Pa. Generally, the improvement of the heat sink
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performance can be checked by the thermal performance

factor (TPF,g) which is defined as follows;

g ¼ Nu=Nurefð Þ
f =frefð Þ1=3

ð24Þ

where Nu is the Nusselt number concerned with the

maximum temperature and f the friction coefficient that

is related to the pressure drop. The subscript ref is the

initial condition. When g is greater than 1(one), it means
that the thermal performance of the heat sink is im-

proved compared to that of the initial design. We can

estimate it by qualitatively. That is, the decrease in the

maximum temperature of optimal solutions implies an

increase in the heat transfer rate. The reduction of the

pressure drop means the decrease in the friction coeffi-

cient compared to those of the initial condition. From

these results, it can be illustrated that the performance

of the heat sink is improved after the optimization. It

can also be seen from Table 1 that the optimal values

of all design variables, i.e., the base-part fin width

(B1), lower-part fin width (B2), and base thickness (t)

are changed. Note that the optimal values and the corre-

sponding pressure drop depend on the required temper-

ature rises.

The optimal solutions for various desired tempera-

ture rises (i.e., DT = 33, 34, 35, and 36 K) are presented

in Table 2. It enables the comparison of each optimal

solution for four different temperature rises. Optimal re-

sults for the SQP method [15] are also presented in Table

2 in order to investigate the accuracy of the PQRSM.

The objective function for the PQRSM has a lower value

than that for the SQP method for all temperature rises as

shown in Table 2. For example, for DT < 35 K, the

objective function (i.e., pressure drop) obtained by the

PQRSM is 51.67 Pa and it is lower by 1.87 Pa than that

of the SQP method (i.e., 53.54 Pa). The reduction of

3.5% in the pressure drop means that the optimal values

by the PQRSM are more accurate than those of the SQP

method. Therefore, it is clear that the PQRSM is supe-

rior to the SQP method within the range of this study.

In Table 2, the ‘‘NFC’’ is the ‘‘No. of function calls’’
Table 2

Optimum designs for various temperature rises

DT = 33 K DT = 34 K

PQRSM SQP(15) PQRSM SQP(15)

B1 [mm] 3.037 2.903 2.961 2.637

B2 [mm] 2.024 2.348 1.691 1.897

t [mm] 10.905 10.491 11.374 10.581

DP [Pa] 71.23 72.95 57.68 58.21

Tj [K] 350.96 350.92 351.91 351.99

hj [K/W] 0.0492 0.0506

NFC 48 36 38 33

Note: NFC—Number of function calls.
and it implies the total number of flow and thermal anal-

yses required (i.e., total number of changes of design

variables proposed by an optimizer) throughout the

optimization process. However, Table 2 shows that

more NFC is needed to obtain the optimal values using

the PQRSM. The increased NFC is mainly due to the

fact that the optimal values for the PQRSM are global

one, while the results for SQP method are a local opti-

mum, which is one of the various optima. Table 2 illus-

trates that the more heat is removed, the more iterations

for obtaining the optimal solutions are needed (for

example, for DT = 33 and 36 K, the number of function

calls are 48 and 32, respectively). This means that if the

designer chooses a larger DT, the optimizer can easily

find the optimal design variables for minimizing the

pressure drop during the optimization process. The de-

sign variables can be obtained directly from Table 2

for the most useful geometrical configurations of the

plate-fins heat sink. That is, if the required temperature

rise is 35 K for the safe working in a certain electronic

device, a designer simply chooses the design variables

in the third column of optimal results in Table 2.

To explain variations of the optimal design variables

for four different temperature rises, they are also plotted

in Fig. 10. It can be observed that the optimum design

variables vary according to the temperature rise (DT),
as expected. If the value of the required temperature rise

is small, large values of B1 and B2 will be acquired

through the optimization process in order to enhance

the heat transfer rate. However, we can observe an inter-

esting result that the variation of optimized base thick-

nesses (t) with respect to DT has a different trend

compared to that of other design variables. That is,

the base thickness (t) has a maximum value within the

optimal solutions. This arises from the following fact;

the heat transfer mechanism (i.e., conduction or convec-

tion) mainly contributes to dissipating heat for a certain

temperature rise condition, as discussed in Fig. 8. From

this result, it can be noted that the base thickness has lit-

tle effect on reducing the pressure drop and increasing

the thermal performance. Table 2 and Fig. 10 also show
DT = 35 K DT = 36 K

PQRSM SQP(15) PQRSM SQP(15)

2.611 2.468 2.256 2.179

1.267 1.365 1.250 1.250

10.541 11.186 9.355 10.041

51.67 53.54 46.22 47.68

352.98 352.99 353.95 353.89

0.0522 0.0537

36 28 32 26
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that the pressure drop is decreased with an increase in

DT. That is, when the temperature rise is increased from

33 to 36 K, the pressure drop is reduced from 71.23 to

46.22 Pa, respectively. The thermal resistances (hj) for
all temperature rises are decreased compared to that of

the initial model (i.e., 0.0573 W/K). Thus, we can find

that the performance of the heat sink is improved

through the optimal design. In addition, Table 2 illus-

trates that the pressure drop is inversely proportional

to the temperature rise. From this, it is obvious that

for design of the heat sink with plate-fins, the choice

of the proper design variables is very important by con-

sidering which one is preferable between the pressure

drop and the thermal resistance (or temperature rise).

A set of optimal solutions for the objective function

can be constructed to select the preferred solution based

on Table 2. For this, the relationship between the objec-

tive function (Dp) and the temperature rise (DT) is pre-
sented in Fig. 11. The results can be very helpful to
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pressure drop (DP).
designers in order to choose the optimal values of the

heat sink. For example, when designers want to focus

on decreasing the thermal resistance rather than decreas-

ing the pressure drop, they can select the points such as

(c) or (d) on the curve of Fig. 11 and then can read the

corresponding optimal design variables in Table 2. For

the thermal management of the heat sink, it is important

to remark that the most important goal is to maximize

the heat transfer rate or minimize the temperature rise

and this is easily achieved both by increasing the velocity

in the heat sink and by extending the heat transfer area,

as discussed in Figs. 6–8. However, the pressure drop is

strongly related to the specific cost, because the size of

the fan needed to blow the cool air through the heat sink

can be determined by it. Therefore, choosing one of the

performance functions (i.e., pressure drop and heat

transfer rate) is dependent on the heat sink designers. Fi-

nally, it is strongly recommended that the optimal solu-

tion of a point (b) in Fig. 11 is better than other

solutions since both the thermal resistance and the pres-

sure drop are decreased by 8.4% and 3.0%, respectively,

compared to those of the initial design. In this case, the

optimal design variables are B1 = 2.611 mm, B2 =

1.267 mm, and t = 10.541 mm, as shown in Table 2.
6. Conclusions

The optimal values of the design variables of the

plate-fins heat sink to minimize the pressure drop were

acquired numerically under the required temperature

rise. The thermal and flow characteristics in the heat

sink were analyzed using the finite volume method.

And the PQRSM method, which is one of the sequential

approximate optimization techniques, was used to solve

the nonlinear, constrained optimization problem. As the

results of optimization, the following conclusions were

obtained:

The most dominant design variables for the pressure

drop and the thermal resistance were the base-part fin

width (B1), and the lower-part fin width (B2), while the

effect of base thickness (t) on them was relatively small.

The optimal design variables could be obtained succes-

sively by integration of the CFD code and the PQRSM.

The accuracy and efficiency of the PQRSM were vali-

dated through the comparison with the SQP method,

which is a gradient-based local optimization technique.

The results also showed that the optimal design vari-

ables for the temperature rise of 35 K were B1 =

2.611 mm, B2 = 1.267 mm, and t = 10.541 mm. In this

case, both the thermal resistance and the pressure drop

for the optimum model were decreased by 8.4% and

3.0%, respectively, compared to those of the baseline

model. It was also found that the optimal design vari-

ables were varied with the desired temperature rise

which is the most important factor for the thermal
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stability of heat sink. The optimization could be com-

pleted as the relationship between pressure drop and

the temperature rise was plotted. The results of this

work can offer designers the information they need to se-

lect the optimal design variables corresponding to the

preferred objective functions.
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